Problems on complex numbers

1.

A. define the complex numbers geometrically.

B. Show that if x + ib = c + id iff x = c and b = d.

2. Prove the following properties:

A.
$$\overline{z^n} = \overline{z}^n$$

B.
$$\bar{\bar{z}} = z$$

*try to prove them geometrically.

3. Prove the following property:

A. Based on your geometric definition of complex number every number can be represented as:

$$z = R(\cos\theta + i\sin\theta)$$

B. If $z_1, z_2 \in \mathbb{C}$ and $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$, $z_2 = r_1(\cos\theta_2 + i\sin\theta_2)$ then $z_1z_2 = r_1r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$.

3. Find the group of numbers in the Cartesian plane of the graph f(x) = 1/x rotated by 45°.

4. Prove that if p(z)=0 where $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ and $a_i\in\mathbb{R}$,then $p(\bar{z})=0$.

A harder version: try to prove (Q4) geometrically.

¹ Cartesian plane -The regular x, y plane.