Linear Algebra 1 Final Exam Solutions

1. Prove the Steinitz exchange lemma.

If $\{w_1, w_2, ..., w_m\}$ is a set of m linearly independent vectors in V and $\{v_1, v_2, ..., v_n\}$ spans V, then:

- 1. $m \leq n$.
- 2. After reordering the v_i the set $\{w_1, w_2, ..., w_m, v_{m+1}, ..., v_n\}$ spans V.

Solution: could be found on the internet.

2. Prove Cramer's rule.

Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: Ax = b. Where $|A| \neq 0$, $x = (x_1, ..., x_n)^t$ then:

$$x_i = \frac{\det(A_i)}{\det(A)}.$$

Where A_i is the matrix formed by replacing the i-th column of A by the column vector b. Solution: could be found on the internet.

3. $U \xrightarrow{S} V \xrightarrow{T} W$, where S, T are linear transformations. Prove:

 $T \circ S$ injection $\Leftrightarrow S$ injection and $Im S \cap Ker T = \{0\}$.

 \Rightarrow Let $u, u' \in U$ such that S(u) = S(u') then $(T \circ S)(u) = (T \circ S)(u')$ but $T \circ S$ is injective hence u = u' hence S is injective.

Let $v \in Im \ S \cap Ker \ T$ hence there exsits $u \in U$ such that S(u) = v and T(v) = 0. Hence $(T \circ S)(u) = 0 = (T \circ S)(0)$ but $T \circ S$ is injective hence u = 0 therefore v = S(0) = 0, $0 \in Im \ S \cap Ker \ T$ hence $Im \ S \cap Ker \ T = \{0\}$.

 \Leftarrow Let $u \in Ker\ T \circ S$ then $(T \circ S)(u) = 0$ let v = S(u) then $v \in Im\ S \cap Ker\ T$ hence v = 0 then 0 = S(u) = S(0), S is injective hence u = 0. Hence $Ker\ T \circ S = \{0\}$ hence $T \circ S$ is an injection.

4. Let \mathbb{F} be a finite field with q elements. Find how many isomorphisms $\mathbb{F}^4 \to \mathbb{F}^4$ exists. Solution:

It is well known that there exists a unique linear transformation $T: V \to V$ such that:

$$T(v_1) = w_1$$
, $T(v_2) = w_2,..., T(v_n) = w_n$.

Where $\{v_1, \dots, v_n\}, \{w_1, \dots, w_n\}$ are bases of V.

Notice that T is Surjection (on-to), hence T injection and hence isomorphism.

Back to our problem, if we count how many bases \mathbb{F}^4 has, we are done.

Let us "build" a basis for \mathbb{F}^4 , the first element could by anything but the zero vector thus we have q^4-1 choises. Now for the second element we have all the vectors expect the vectors that are spanned by the first vector that we chose, there q^4-q vectors like that. For the third element we q^4-q^2 vectors that we can choose, for the last element we q^4-q^3 choices. Thus we have $(q^4-1)(q^4-q)(q^4-q^2)(q^4-q^3)$ isomorphisms $\mathbb{F}^4\to\mathbb{F}^4$.

5. Let $A, B \in M_n$ such that $rank \ AB = rank \ B$. Prove that every solution to (AB)X = 0 is a solution for BX = 0.

Solution:

Let P_1 be the solution space of (AB)X = 0, and P_2 be the solution space of BX = 0. then dim $P_1 = \dim P_2$, and it is trivial that $P_2 \subseteq P_1$ and hence $P_1 = P_2$. Q.E.D.

6. Calculate the following determinant:

$$det\begin{pmatrix} 6 & 2 & 2 & 2 & 2 \\ 2 & 6 & 2 & 2 & 2 \\ 2 & 2 & 6 & 2 & 2 \\ 2 & 2 & 2 & 6 & 2 \\ 2 & 2 & 2 & 2 & 6 \end{pmatrix}$$

Solution:

$$\det\begin{pmatrix}6 & 2 & 2 & 2 & 2\\ 2 & 6 & 2 & 2 & 2\\ 2 & 2 & 6 & 2 & 2\\ 2 & 2 & 2 & 6 & 2\\ 2 & 2 & 2 & 2 & 6\end{pmatrix}\xrightarrow{R_1\to R_1+\sum_{i>1}R_i}\det\begin{pmatrix}14 & 14 & 14 & 14 & 14\\ 2 & 6 & 2 & 2 & 2\\ 2 & 2 & 6 & 2 & 2\\ 2 & 2 & 2 & 6 & 2\\ 2 & 2 & 2 & 2 & 6\end{pmatrix}$$

$$\to 14\cdot\det\begin{pmatrix}1 & 1 & 1 & 1 & 1\\ 2 & 6 & 2 & 2 & 2\\ 2 & 2 & 6 & 2 & 2\\ 2 & 2 & 2 & 6 & 2\\ 2 & 2 & 2 & 6 & 2\\ 2 & 2 & 2 & 2 & 6\end{pmatrix}\xrightarrow{R_i\to R_i-2R_1}14\cdot\det\begin{pmatrix}1 & 1 & 1 & 1 & 1\\ 0 & 4 & 0 & 0 & 0\\ 0 & 0 & 4 & 0 & 0\\ 0 & 0 & 0 & 4 & 0\\ 0 & 0 & 0 & 0 & 4\end{pmatrix}$$

And this is an upper triangular matrix, thus:

$$= 14 \cdot 4^4 = 7 \cdot 2^9$$
.